- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Roje, Sanja (2)
-
Saeheng, Sompop (2)
-
Alcántara-Enguídanos, Andrea (1)
-
Alepúz, Paula (1)
-
Arlynn, Tana (1)
-
Bailes, Clayton (1)
-
Bailes, Clayton L (1)
-
Bao, Han (1)
-
Barbosa-Medeiros, David (1)
-
Casatejada-Anchel, Ruben (1)
-
Erban, Alexander (1)
-
Fernie, Alisdair R (1)
-
Gashu, Kelem (1)
-
Kopka, Joachim (1)
-
Krueger, Stephan (1)
-
Martínez-Seidel, Federico (1)
-
Matus, José Tomás (1)
-
Morency, Matt (1)
-
Muñoz-Bertomeu, Jesús (1)
-
Ros, Roc (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
SUMMARY The metabolism of tetrahydrofolate (H4PteGlun)‐bound one‐carbon (C1) units (C1metabolism) is multifaceted and required for plant growth, but it is unclear what of many possible synthesis pathways provide C1units in specific organelles and tissues. One possible source of C1units is via formate‐tetrahydrofolate ligase, which catalyzes the reversible ATP‐driven production of 10‐formyltetrahydrofolate (10‐formyl‐H4PteGlun) from formate and tetrahydrofolate (H4PteGlun). Here, we report biochemical and functional characterization of the enzyme fromArabidopsis thaliana(AtFTHFL). We show that the recombinant AtFTHFL has lowerKmandkcatvalues with pentaglutamyl tetrahydrofolate (H4PteGlu5) as compared to monoglutamyl tetrahydrofolate (H4PteGlu1), resulting in virtually identical catalytic efficiencies for the two substrates. Stable transformation ofArabidopsisplants with the EGFP‐tagged AtFTHFL, followed with fluorescence microscopy, demonstrated cytosolic signal. Two independent T‐DNA insertion lines with impaired AtFTHFL function had shorter roots compared to the wild type plants, demonstrating the importance of this enzyme for root growth. Overexpressing AtFTHFL led to the accumulation of H4PteGlun + 5,10‐methylene‐H4PteGlunand serine, accompanied with the depletion of formate and glycolate, in roots of the transgenicArabidopsisplants. This metabolic adjustment supports the hypothesis that AtFTHFL feeds the cytosolic C1network in roots with C1units originating from glycolate, and that these units are then used mainly for biosynthesis of serine, and not as much for the biosynthesis of 5‐methyl‐H4PteGlun, methionine, andS‐adenosylmethionine. This finding has implications for any future attempts to engineer one‐carbon unit‐requiring products through manipulation of the one‐carbon metabolic network in non‐photosynthetic organs.more » « less
-
Rosa-Téllez, Sara; Alcántara-Enguídanos, Andrea; Martínez-Seidel, Federico; Casatejada-Anchel, Ruben; Saeheng, Sompop; Bailes, Clayton L; Erban, Alexander; Barbosa-Medeiros, David; Alepúz, Paula; Matus, José Tomás; et al (, The Plant Cell)Abstract L-serine (Ser) and L-glycine (Gly) are critically important for the overall functioning of primary metabolism. We investigated the interaction of the phosphorylated pathway of Ser biosynthesis (PPSB) with the photorespiration-associated glycolate pathway of Ser biosynthesis (GPSB) using Arabidopsis thaliana PPSB-deficient lines, GPSB-deficient mutants, and crosses of PPSB with GPSB mutants. PPSB-deficient lines mainly showed retarded primary root growth. Mutation of the photorespiratory enzyme Ser-hydroxymethyltransferase 1 (SHMT1) in a PPSB-deficient background resumed primary root growth and induced a change in the plant metabolic pattern between roots and shoots. Grafting experiments demonstrated that metabolic changes in shoots were responsible for the changes in double mutant development. PPSB disruption led to a reduction in nitrogen (N) and sulfur (S) contents in shoots and a general transcriptional response to nutrient deficiency. Disruption of SHMT1 boosted the Gly flux out of the photorespiratory cycle, which increased the levels of the one-carbon (1C) metabolite 5,10-methylene-tetrahydrofolate and S-adenosylmethionine. Furthermore, disrupting SHMT1 reverted the transcriptional response to N and S deprivation and increased N and S contents in shoots of PPSB-deficient lines. Our work provides genetic evidence of the biological relevance of the Ser–Gly–1C metabolic network in N and S metabolism and in interorgan metabolic homeostasis.more » « less
An official website of the United States government
